

1 Expression of natural cytotoxicity receptor NKp46 on peripheral
 2 blood natural killer cells in women with a history of recurrent
 3 implantation failures

4 **Boris V. Dons`koi¹, Dariia V. Osypchuk¹, Viktor P. Chernyshov¹, Kseniia G. Khazhylenko²**

5
 6 ¹ Laboratory of Immunology, Institute of Pediatrics, Obstetrics and Gynecology named
 7 after academician O. Lukyanova of the National Academy of Medical Sciences of
 8 Ukraine. Mayborody str 8, 04050 Kyiv, Ukraine.

9 ² “IVMED Rodynne dzherelo” IVF Fertility Center, Aviakonstruktora Antonova street
 10 2B, 03186, Kyiv, Ukraine

11 **Correspondence:** Dariia V Osypchuk, Laboratory of Immunology, Institute of Pediatrics,
 12 Obstetrics and Gynecology named after academician O. Lukyanova of the National Academy of Medical
 13 Sciences of Ukraine. Mayborody str 8, 04050 Kyiv, Ukraine.

14 Email: dariia.osypchuk@gmail.com

15 Fax: (044) 483-26-32

16 Phone: (044) 483-80-67

17 **Abstract**

18 **Aim:** The peripheral blood NK cells diversity is highly complex; recent studies described more
 19 than a thousand phenotypes sharing NK cell receptors, across the leukocyte lineages. In this
 20 study, we investigated the expression of NKp46 in peripheral blood NK cells in women with a
 21 history of recurrent implantation failures (RIF) with euploid embryos with pre-implantation
 22 genetic diagnosis (PGD) and control group (donors of oocytes and surrogate mothers).

23 **Methods:** The expression of NKp46 in peripheral blood lymphocytes and NK cells from women
 24 with RIF (n=57) and control group (n=50) was analyzed with 3-color flow cytometry.

25 **Results:** The percentage of NKp46⁺NK cells was significantly higher in women with RIF
 26 compare with the control group and high amount of NKp46⁺NK cells (>13% of total
 27 lymphocytes) was a poor prognostic factor for embryo implantation. Also, women with RIF had
 28 a low amount of NKp46^{neg}NK cells, which was a negative prognostic factor for embryo
 29 implantation. The analysis of NK subpopulations, on the basis of NKp46 expression, also
 30 revealed that NKp46^{neg}NK in low amounts (<20% of NK cells) and NKp46^{dim} in high amounts
 31 (>50% of NK cells) are also negative prognostic factors for embryo implantation.

32 **Conclusion:** Our results support the clinical significance of the NKp46 expression on NK cells in women
 33 with RIF. We suggest that the low level of NKp46^{neg} subset in women with RIF may be a result
 34 of an imbalance in the differential development of ILC subsets towards cytotoxic ILC (NK
 35 cells), which in turn is a negative condition for successful embryo implantation.

36 **Key words:** NK cells, NKp46, ILCs, recurrent implantation failures

37 **Running head:** NKp46 on NK cells in women with RIF

38 **Introduction**

40 Innate lymphoid cells (ILCs) - are functionally heterogeneous and plastic cell populations and
41 are important effector cells in disease and tissue homeostasis. Natural killer (NK) cells are the
42 predominant innate lymphocyte subsets that mediate anti-tumor and anti-viral responses.¹

43 The role of NK cells in human reproduction has been studied for decades.²⁻⁵ Many of the
44 articles demonstrate a close relationship between the accentuated parameters of NK cells, both
45 quantitative and functional, and reproductive failures - such as recurrent implantation failures,
46 recurrent pregnancy loss. The contradictory nature of the results from all these studies suggests
47 that although abnormal NK cell counts or function may contribute to RIF, there is insufficient
48 evidence from which to draw firm conclusions.²

49 The activity of NK cells is tightly regulated by a combination of cell surface-expressed
50 inhibitory and activating receptors. NKp46 is a major NK cell-activating receptor that is
51 involved in the elimination of target cells.^{6,7}

52 Some studies suggest that regulation of NKp46 expression in various types of NK cells may be
53 one of the key factors in reproductive failure, and analysis of NKp46 expression may be a useful
54 tool in investigating and diagnosing reproductive failures, such as RPL and implantation
55 failures.^{5,8}

56 Previously⁹, we have found that a fraction of NKp46⁺NK cells has prognostic value for
57 accentuated NK cytotoxicity status, both low and high. Since our previous study was conducted
58 only in healthy persons, the next stage of our work and the aim of this study is to estimate the
59 prognostic value of the NKp46⁺ cell fraction in a cohort of infertile women, whose IVF failures
60 could be associated with NK abnormalities.

61

62

63 **Methods**

64 Study subjects

65 The expression of NKp46 in peripheral blood NK cells from women with previous implantation
66 failure with PGD embryos (at least 3 lost in IVF cycle, and at least one lost with PGD embryo)
67 (n=57) and control group - women who are donors of oocytes (at least one own child) and
68 surrogate mothers (at least one own child and one child as a surrogate mother)(n=50) was
69 analyzed with 3-color flow cytometry.

70 The control group - women under 35 years (mean age 29.5). Oocyte donors had an average of 4
71 previous cycles of stimulation. Surrogate mothers had an average of 2.8 births. Both egg donors
72 and surrogate mothers did not experience pregnancy or IVF failure.

73 The RIF¹⁰ patients - women younger than 40 years (mean age - 34, 3). All women in the group
74 had more than 3 idiopathic implantation failures, (an average - 4,8) and at least with 1 euploid
75 PGD tested embryo (an average - 1,2). (**Table 1**)
76 Women with anatomical, endocrine, infectious, or autoimmune disorders, including
77 antiphospholipid syndrome and genetic etiologies of RIF, were excluded from the study.
78 Peripheral blood samples were taken during the implantation window period, on day 16-20.
79 The local ethical committee's approval in accordance with the Helsinki Declaration of 1975 on
80 human experimentation and patient's informed consent were obtained.
81

82 *Assessment of NKp46 expression*

83 To determine the NKp46 expression, 100 μ L of the whole blood stained by FITC-, PE- and -
84 Cy5-conjugated monoclonal antibodies to CD3, NKp46 and CD56 (BD Bioscience, San Jose,
85 USA) was used. Washed or lysed and washed, the samples were analyzed by FACScan flow
86 cytometer using CellQuest software (BD Bioscience, San Jose, USA). Lymphocyte population
87 was determined using forward versus side scatter (FSC vs SSC) gating. The lymphocyte gate is
88 further analyzed for CD3, CD56, NKp46 expression.

89 The baseline NKp46 expression on NK cells was assessed by flow cytometry. The CD3^{negative} CD56⁺ NK
90 cells were gated from the total lymphocyte population – %NK. In all the samples, all CD56^{bright} NK cells
91 expressed high levels of NKp46. Three different CD56^{dim} NK CD335(NKp46) phenotypes were identified
92 – NKp46^{high}, NKp46^{dim}, and NKp46^{neg} predominance. (Fig.1.)

93 The percentage of NKp46⁺ NK cells (%NKp46⁺ NK) among all the lymphocytes was determined as
94 both NKp46^{high} and NKp46^{dim} subsets.

95 1.1. Statistical Analysis

96 The statistical analysis of the results was performed using the Fisher's Exact Test (unpaired, non-
97 parametric, two-sided P value) in Stat version 3.0 for Windows Graph Pad Software Inc., San Diego, CA,
98 USA).

99

100 **Results**

101
102 The percentage of peripheral blood NK cells (CD3⁻CD56⁺) didn't differ between the groups
103 (P=0.353) (Fig.2). But there was a difference in the percentage of NKp46⁺ NK cells (CD3⁻
104 CD56⁺CD335⁺) between the groups.

105 The women with RIF had a higher percentage of NKp46⁺NK compare with a control
 106 group (P=0.008) (Fig.3.) The amount of NKp46⁺NK (more than 13% of total lymphocytes) was
 107 a negative prognostic factor for embryo implantation (OR=3.512, P=0.027).

108 Further analysis revealed that the low amount of NKp46^{neg} NK cells (less than 1,7% of
 109 total lymphocytes) also is a negative prognostic factor for embryo implantation (OR=3.168,
 110 P=0.006)(Fig.4). We revealed that women with RIF had a high amount of NKp46⁺NKcells and
 111 simultaneously a low amount of NKp46^{neg}NK cells, both of these parameters were negative
 112 prognostic factors for embryo implantation.

113 As described in the Methods section - three different CD56^{dim} NK CD335(NKp46) phenotypes
 114 were identified – NKp46^{high}, NKp46^{dim}, and NKp46^{neg} cells (Fig.1).

115 We have calculated the percentage composition of each subpopulation in total NK cells in
 116 groups and revealed a significant difference, in particular, for NKp46^{neg} and NKp46^{dim}
 117 subpopulations (Fig.5). The women with RIF had a significantly higher amount of NKp46^{dim} and
 118 lower of NKp46^{neg} (P=0.0001 and P=0.0005, respectively).

119 With respect to the different NKp46 phenotypes, we found that the predominance of NKp46^{dim}
 120 cells (>50% of NK cells), particularly in women with RIF, is a negative prognostic factor for implantation
 121 failure (OR=4.853, P=0.0002), compared with control group.

122 Low amount of NKp46^{neg} (<20% of NK cells) in women with RIF, also was a negative prognostic
 123 factor for implantation failure (OR=4.714, P=0.001) compared with control group.

124 125 **Discussion**

126 Natural killer (NK) cells have vital functions in human immunity and reproduction. In the
 127 innate and adaptive immune responses to infection, particularly viruses, NK cells respond by
 128 secreting inflammatory cytokines and killing infected cells.¹¹

129 In reproduction, NK cells are critical for the genesis of the placenta, the organ that
 130 controls the supply of oxygen and nutrients to the growing fetus. A lot of studies have confirmed
 131 the association of NK cells with implantation failures, recurrent miscarriages (RM) or infertility.
 132^{2,12,13}

133 NKp46 is a major NK cell-activating receptor that is involved in the target cell
 134 elimination. It was suggested that NKp46 signaling directly regulates the NK lytic immune
 135 synapse from early formation to late function. Thus, it is directly involved in cytotoxic activity.¹⁴
 136 Also, cross-linking with anti-NKp46 mAb results in calcium release and the secretion of IFN- γ
 137 and TNF- α by NK cells and blocking NKp46 signaling with specific mAbs can result in reduced
 138 NK cell cytotoxicity of certain tumor cell-lines.¹⁵ The clinical relevance of the NKp46
 139 expression on NK cells has been confirmed in numerous research works.¹⁶⁻¹⁸

140 Recently, we have shown that the frequency of the NKp46⁺NK cells correlates with
141 cytotoxic activity and has significant prognostic value for accentuated NK cytotoxicity status
142 indications, both low and high. Those results showed that the NKp46 expression is a “link”
143 between an NK cells frequency and their function and afford grounds for using the assessment of
144 the NKp46⁺NK cells as a responsive, simple, cheap and reliable method for NK cytotoxicity
145 assessment.⁹

146 In our study, we revealed that percentage of NKp46⁺NK was significantly higher in
147 women with RIF compared with the control group and was a negative prognostic factor for
148 embryo implantation, that further suggest a tight connection between the NK cells activity and
149 the NKp46 expression and support the clinical significance of the NKp46 expression on NK cells in
150 women with recurrent implantation failure.

151 Fukui et al. have demonstrated the importance of p46 expression on CD56⁺ lymphocytes in
152 reproduction. They reported decreased expression of NKp46 in peripheral blood and uterine
153 endometrial NK cells in women with previous reproductive failures, such as recurrent pregnancy
154 loss (RPL) and implantation failure, as well as lower production of IFN- γ and TNF- α by uterine
155 NK cells from women with RPL compare to control.^{5,19,20}

156 Endometrial immune profiles are registered as deregulated in most of the patients with recurrent
157 implantation failures compared to controls.²¹ Some authors confirmed the association of uterine
158 NK cells and infertility²²⁻²³, while others found no association.²³⁻²⁴

159 Our study confirmed that there is no association between the main subsets of T and NK cells of
160 peripheral blood and endometrium in healthy fertile women. However, there are associations that
161 exist for some separate subsets, particularly HLA DR⁺ cytotoxic T lymphocytes (HLA DR⁺ [%]
162 in CD3⁺CD8⁺) and CD8+ NK cells (CD8+ [%] in CD56+CD3-), which may reflect some
163 regulatory mechanisms.²⁵ More, in egg donors we found significant correlation in NKp46
164 expression on NK cells between blood and endometrial lymphocytes²⁶, indicating that although
165 the endometrium is a fairly autonomous, but not completely isolated structure.

166 These studies suggest that regulation of NKp46 expression in various types of NK cells
167 may be one of the key factors in a reproductive failure, and analysis of NKp46 expression may
168 be a useful tool in investigating and diagnosing reproductive failures, such as RPL and
169 implantation failures.⁵

170 Interestingly, a low amount of NKp46^{neg}NK cells also associated with poor prognosis for
171 embryo implantation.

172 The density of NKp46 surface expression clearly segregated NKp46^{neg}, NKp46^{dim}, and
173 NKp46^{high} subsets.²⁷ We found that there is a difference in the percentage composition of
174 different subsets between the groups, in particular, women with RIF have a decreased amount of

175 NKp46^{neg}subset and increased amount of NKp46^{dim} subset compared with the control group.
176 Both of these parameters were negative prognostic factors for embryo implantation. Our
177 previous studies of NK cells showed that accentuated parameters in this population are often
178 adverse.²⁸⁻³⁰

179 NK cells (subsets pool) are a subset of ILCs, that mirror CD8+T cells, thus, they may be
180 termed “cytotoxic ILCs”. Innate lymphoid cells (ILCs) are a growing family of immune cells
181 that mirror the phenotypes and functions of T cells. ILCs develop from hematopoietic precursors
182 that may migrate from their primary site of production into infected and injured tissues, where
183 they complete their maturation, similar to the differentiation of naïve T cells into TH effectors.
184 Cytokines produced by local cells as well as stress ligands and bacterial and dietary compounds
185 regulate the maturation and activation of ILCs into effectors that play a major role in early
186 immune responses to pathogens and symbionts, helminths, and allergen.^{1,31,32}

187 Taking into account our results, we can speculate that the low level of NKp46^{neg} subset
188 in women with RIF may be a result of an imbalance in the differential development of ILCs
189 subsets towards cytotoxic ILCs (NK cells), which in turn is a negative condition for successful
190 embryo implantation. Further research with a more accurate analysis of ILCs subpopulations is
191 needed to assess their impact on the reproductive process.

192 We showed the NK-associated difference between a group of women with recurrent
193 implantation failure and a healthy control group. But we don't know if the reduced amount of
194 NKp46^{neg}NK cells and increased amount of NKp46^{dim}NK cells, founded in women with RIF, is
195 the cause or consequence of recurrent implantation failure, and whether these deviations will
196 have a negative prognostic value for the implantation. We are now conducting a double blind
197 study with randomized groups to determine more accurately if such differences are the cause of
198 recurrent implantation failure.

199 Here, we further suggest a tight connection between the NK cells activity and the NKp46
200 expression and support the clinical significance of the NKp46 expression on NK cells in women with
201 recurrent implantation failure. Further, we hypothesize that women with a history of RIF have an
202 imbalance in the differential development of ILCs subsets towards cytotoxic ILC (NK cells).

203

204 **Acknowledgments**

205 We would like to offer our special thanks to Prof. Victor Dosenko for this study initiation and for
206 his assistance in the reagents acquisition. Furthermore, we would like to thank the blood donors
207 for their participation, as well as the Institute of Reproductive Medicine, Isida clinic and Nadiia
208 clinic.

209

210

211 **Disclosure**

212 None declared.

213 **References**

- 214 1. Eberl G, Colonna M, Santo JPD, McKenzie ANJ. Innate lymphoid cells: A new paradigm in
215 immunology. *Science* (80-). 2015;348(6237).
- 216 2. Templer S, Sacks G. A blessing and a curse: is high NK cell activity good for health and bad for
217 reproduction? *Hum Fertil.* 2016;19(3):166–72.
- 218 3. Dons'koi B V., Chernyshov VP, Sirenko VY, Strelko G V., Osypchuk D V. Peripheral blood
219 natural killer cells activation status determined by CD69 upregulation predicts implantation
220 outcome in IVF. *Immunobiology* [Internet]. 2014;219(3):167–71. Available from:
221 <http://dx.doi.org/10.1016/j.imbio.2013.09.002>
- 222 4. Narni-Mancinelli E, Chaix J, Fenis A, Kerdiles YM, Yessaad N, Reynders A, et al. Fate mapping
223 analysis of lymphoid cells expressing the NKp46 cell surface receptor. *Proc Natl Acad Sci.*
224 2011;108(45):18324–9.
- 225 5. Fukui A, Funamizu A, Fukuhara R, Shibahara H. Expression of natural cytotoxicity receptors and
226 cytokine production on endometrial natural killer cells in women with recurrent pregnancy loss or
227 implantation failure, and the expression of natural cytotoxicity receptors on peripheral blood
228 natural killer. *J Obstet Gynaecol Res.* 2017;43(11):1678–86.
- 229 6. Barrow AD, Martin CJ, Colonna M. The natural cytotoxicity receptors in health and disease. *Front*
230 *Immunol.* 2019;10(MAY):1–20.
- 231 7. Pembroke T, Christian A, Jones E, Hills RK, Wang ECY, Gallimore AM, et al. The paradox of
232 NKp46⁺ natural killer cells: Drivers of severe hepatitis C virus-induced pathology but in-vivo
233 resistance to interferon α treatment. *Gut.* 2014;63(3):515–24.
- 234 8. Of C, Nk U, In C, With W, Or I, Pregnancy R, et al. Infertility or Recurrent Pregnancy Loss and.
235 2015;72(3):262–9.
- 236 9. Dons'koi BV, Osypchuk DV, Chernyshov VP. Enumeration of peripheral blood NKp46 positive
237 NK lymphocytes reflects NK cytotoxic activity in vitro. *J Immunol Methods.* 2019;
- 238 10. Coughlan C, Ledger W, Wang Q, Liu F, Demiroglu A, Gurgan T, et al. Recurrent implantation
239 failure: Definition and management. *Reprod Biomed Online.* 2014;28(1):14–38.
- 240 11. D.L.Altmann. Natural killer cell transcriptional control, subsets, receptors and effector function.
241 *Front Immunol* [Internet]. 2015;6(3):1–11. Available from:
242 <http://dx.doi.org/10.1016/j.jim.2008.11.006>
- 243 12. Dons'koi B V. Accentuated hypo- and hyper-NK lymphocyte CD8 expression is a marker of NK
244 subsets' misbalance and is predictive for reproductive failures. *Immunobiology* [Internet].
245 2015;220(5):649–55. Available from: <http://dx.doi.org/10.1016/j.imbio.2014.11.015>
- 246 13. Kuon RJ, Vomstein K, Weber M, Müller F, Seitz C, Wallwiener S, et al. The “killer cell story” in
247 recurrent miscarriage: Association between activated peripheral lymphocytes and uterine natural

248 killer cells. *J Reprod Immunol* [Internet]. 2017;119:9–14. Available from:
249 <http://dx.doi.org/10.1016/j.jri.2016.11.002>

250 14. Hadad U, Thauland TJ, Martinez OM, Butte MJ, Porgador A, Krams SM. NKp46 clusters at the
251 immune synapse and regulates NK cell polarization. *Front Immunol*. 2015;6(SEP):1–11.

252 15. Sivori S, Vitale M, Morelli L, Sanseverino L, Augugliaro R, Bottino C, et al. P46, a Novel Natural
253 Killer Cell-Specific Surface Molecule That Mediates Cell Activation. *J Exp Med*.
254 1997;186(7):1129–36.

255 16. Han B, Mao FY, Zhao YL, Lv YP, Teng YS, Duan M, et al. Altered NKp30, NKp46, NKG2D,
256 and DNAM-1 Expression on Circulating NK Cells Is Associated with Tumor Progression in
257 Human Gastric Cancer. *J Immunol Res*. 2018;2018.

258 17. Chretien AS, Devillier R, Fauriat C, Orlanducci F, Harbi S, Le Roy A, et al. NKp46 expression on
259 NK cells as a prognostic and predictive biomarker for response to allo-SCT in patients with AML.
260 *Oncoimmunology*. 2017;6(12).

261 18. Garcia-Iglesias T, del Toro-Arreola A, Albaran-Somoza B, del Toro-Arreola S, Sanchez-
262 Hernandez PE, Ramirez-Dueñas M, et al. Low NKp30, NKp46 and NKG2D expression and
263 reduced cytotoxic activity on NK cells in cervical cancer and precursor lesions. *BMC Cancer*.
264 2009;9:1–8.

265 19. Fukui A, Ntrivalas E, Gilman-Sachs A, Kwak-Kim J, Lee SK, Levine R, et al. Expression of
266 natural cytotoxicity receptors and a2V-ATPase on peripheral blood NK cell subsets in women
267 with recurrent spontaneous abortions and implantation failures. *Am J Reprod Immunol*.
268 2006;56(5–6):312–20.

269 20. Fukui A, Ntrivalas E, Fukuhara R, Fujii S, Mizunuma H, Gilman-Sachs A, et al. Correlation
270 between natural cytotoxicity receptors and intracellular cytokine expression of peripheral blood
271 NK cells in women with recurrent pregnancy losses and implantation failures. *Am J Reprod
272 Immunol*. 2009;62(6):371–80.

273 21. Lédée N, Prat-Ellenberg L, Chevrier L, Balet R, Simon C, Lenoble C, et al. Uterine immune
274 profiling for increasing live birth rate: A one-to-one matched cohort study. *J Reprod Immunol*
275 [Internet]. 2017;119:23–30. Available from: <http://dx.doi.org/10.1016/j.jri.2016.11.007>

276 22. Quenby S, Bates M, Doig T, Brewster J, Lewis-Jonesn DI, Johnson PM, et al. Pre-implantation
277 endometrial leukocytes in women with recurrent miscarriage. *Hum Reprod*. 1999;14(9):2386–91.

278 23. Clifford K, Flanagan AM, Regan L. Endometrial CD56 + natural killer cells in women with
279 recurrent miscarriage: A histomorphometric study. *Hum Reprod*. 1999;14(11):2727–30.

280 24. Matteo MG, Greco P, Rosenberg P, Mestice A, Baldini D, Falagario T, et al. Normal percentage
281 of CD56bright natural killer cells in young patients with a history of repeated unexplained
282 implantation failure after in vitro fertilization cycles. *Fertil Steril*. 2007;88(4):990–3.

283 25. Chernyshov VP, Dons'koi B V., Sudoma IO, Goncharova YO. Comparison of T and NK
284 lymphocyte subsets between human endometrial tissue and peripheral blood. *Cent Eur J Immunol*.
285 2019;44(3):316–21.

286 26. Journal A, Immunology R. The 39th Annual Meeting of the American Society for Reproductive
287 Immunology 12–15 June 2019 Grand Rapids, Michigan, USA. 2019;81(May).

288 27. Krämer B, Körner C, Kebschull M, Glässner A, Eisenhardt M, Nischalke HD, et al. Natural killer
289 p46 High expression defines a natural killer cell subset that is potentially involved in control of
290 hepatitis C virus replication and modulation of liver fibrosis. *Hepatology*. 2012;56(4):1201–13.

291 28. Chernyshov VP, Dons'koi B V., Sudoma IO, Goncharova YO. Favorable immune phenotype
292 predicts successful implantation and pregnancy. *Immunol Lett* [Internet]. 2014;162(2):217–21.
293 Available from: <http://dx.doi.org/10.1016/j.imlet.2014.10.022>

294 29. Dons'koī BV, Chernyshov VP, Sudoma IO, Honcharova IO, Osypchuk DV. [Qualitative analysis
295 of accented CD158a receptor expression in NK-lymphocytes in women with reproductive
296 failures]. *Lik Sprava*. 2013;(1).

297 30. Dons'koī BV, Chernyshov VP, Sirenko VI, Strelko HV, Osypchuk DV. [Effect of hypo- and
298 hyper- accentuated NK cell activity on embryo implantation]. *Fiziol Zh*. 2014;60(1).

299 31. Chiossone L, Dumas PY, Vienne M, Vivier E. Natural killer cells and other innate lymphoid cells
300 in cancer. *Nat Rev Immunol* [Internet]. 2018;18(11):671–88. Available from:
301 <http://dx.doi.org/10.1038/s41577-018-0061-z>

302 32. Ivanova DL, Denton SL, Fettel KD, Sondgeroth KS, Gutierrez JM, Bangoura B, et al. Innate
303 lymphoid cells in protection, pathology, and adaptive immunity during apicomplexan infection.
304 *Front Immunol*. 2019;10(FEB):1–15.

305

306

307

308 Figures legend

309

310 Figure 1. Gating strategy used to identify NK cells and NKp46⁺NK cell subsets.

311 Figure 2. Frequency of NK cells in peripheral blood in women with recurrent implantation
312 failures (RIF) and control group.

313 Figure 3. Frequency of NKp46⁺NK cells in peripheral blood in women with recurrent
314 implantation failures (RIF) and control group.

315 Figure 4. Frequency of NKp46^{neg}NK cells in peripheral blood in women with recurrent
316 implantation failures (RIF) and control group.

317 Figure 5. The percentage composition of different subpopulation - NKp46^{high}, NKp46^{dim}, and
318 NKp46^{neg} in total NK cells women with recurrent implantation failures (RIF) and control
319 group.

320

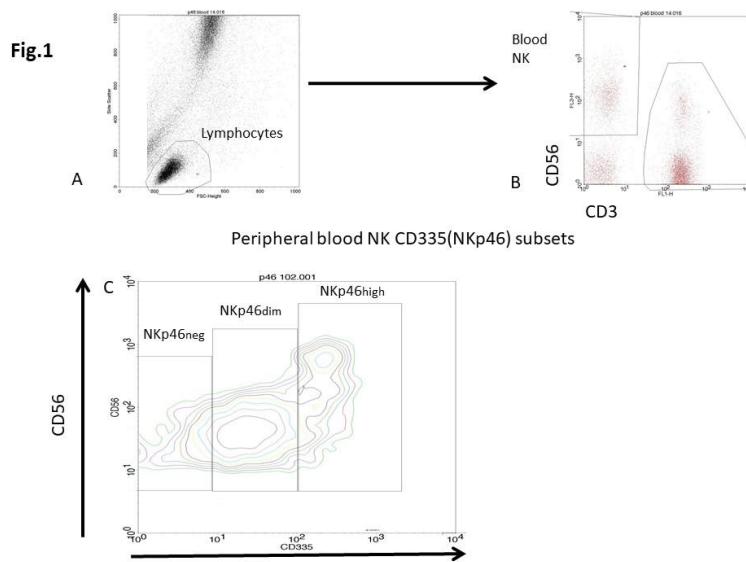
321

322

323 **Table 1** Age, obstetric, and infertility histories of women with RIF and controls

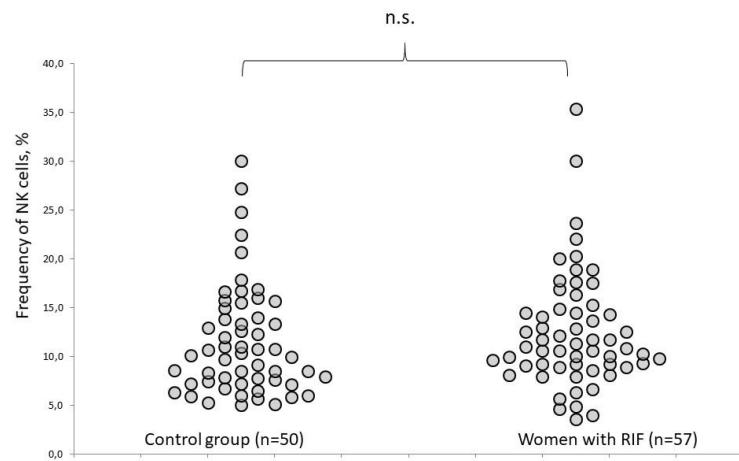
	Age (average)	IVF failure (average)	Deliveries (average)	IVF cycles (average)
Controls(n=50)*	29,5 ± 3,6	0	2,8±0,9	4,0±2,5
RIF (n=57)	34,3 ± 2,0	4,8±1,5	0	4,8±1,5
P	NS	<0.01	<0.01	NS

324


325 *the control group consist of oocyte donors and surrogate mothers

326 RIF - recurrent implantation failure

327 NS – not significant


328

329

330

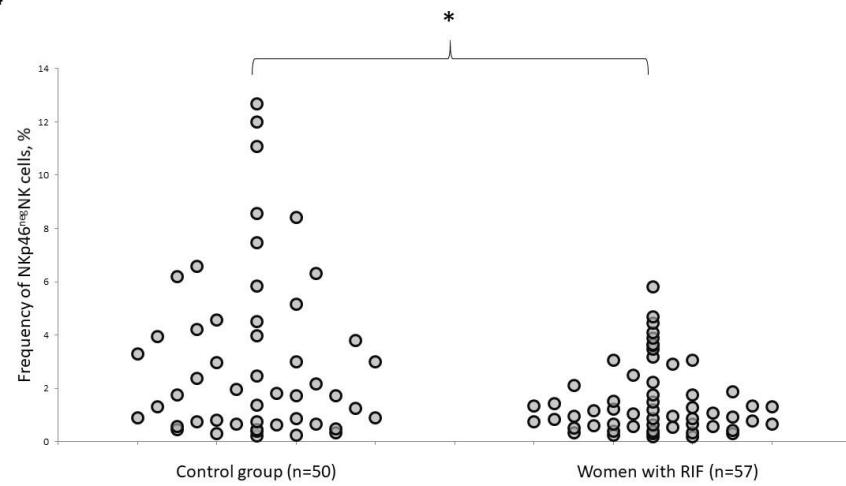

331

Fig.2

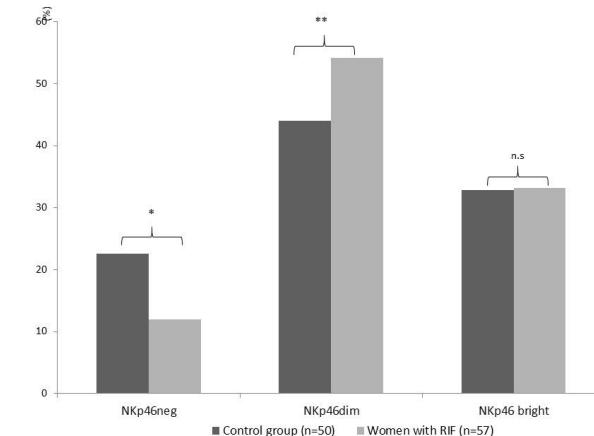

332

Fig.3

333

Fig.4

334

Fig.5

335